-->

Tahap-Tahap Fotosintesis (Reaksi Gelap dan Reaksi Terang)

Tahap-Tahap Fotosintesis (Reaksi Gelap dan Reaksi Terang). Proses reaksi fotosintesis dalam tumbuhan tinggi dibagi menjadi dua tahap, yaitu reaksi terang dan reaksi gelap. Untuk mengetahui bagaimana proses kedua reaksi tersebut, mari cermati uraian berikut ini.

A. REAKSI TERANG
Pada tahap pertama, energi matahari ditangkap oleh pigmen penyerap cahaya dan diubah menjadi bentuk energi kimia, ATP, dan senyawa pereduksi NADPH. Proses ini disebut tahap reaksi terang. Atom hidrogen dari molekul H2O dipakai untuk mereduksi NADP+ menjadi NADPH, dan O2 dilepaskan sebagai hasil samping reaksi fotosintesis. Reaksi ini juga dirangkaikan dengan reaksi endergonik, membentuk ATP dari ADP + Pi. Dengan demikian, reaksi terang dapat dituliskan dengan persamaan:

H2O + NADP+ + ADP + Pi O2 + H+ + NADPH + ATP

Pembentukan ATP dari ADP + Pi, merupakan suatu mekanisme penyimpanan energi matahari yang diserap kemudian diubah menjadi bentuk energi kimia. Proses ini disebut fosforilasi fotosintesis atau fotofosforilasi. Pada reaksi terang yang terjadi di grana, energi cahaya memacu pelepasan elektron dari fotosistem di dalam membran tilakoid. Fotosistem adalah tempat berkumpulnya beratus-ratus molekul pigmen fotosintesis. Aliran elektron melalui sistem transpor menghasilkan ATP dan NADPH. ATP dan NADPH dapat terbentuk melalui jalur non siklik, yaitu elektron mengalir dari molekul air, kemudian melalui fotosistem II dan fotosistem I. Elektron dan ion hidrogen akan membentuk NADPH dan ATP. Oksigen yang dibebaskan berguna untuk respirasi aerob.

Pada klorofil a terdapat dua macam fotosistem, yaitu fotosistem I atau disebut P700 karena sensitif terhadap energi cahaya dengan panjang gelombang 700 nm dan fotosistem II atau disebut P680 yang sensitif terhadap energi cahaya dengan panjang gelombang 680 nm. Proses penyerapan energi cahaya dapat mengakibatkan terlepasnya elektron berenergi tinggi dari klorofil a, selanjutnya disalurkan dan ditangkap oleh akseptor elektron, maka proses tersebut merupakan awal dari proses terjadinya proses fotosintesis. Proses berikutnya elektron masuk dalam aliran elektron, jika elektronnya berasal dari fotosistem I bersifat nonsiklus dan apabila elektronnya berasal dari fotosistem II bersifat siklus.

Perjalanan yang ditempuh oleh elektron ada dua yaitu sebagai berikut.

1. Aliran Siklis

Cahaya berenergi tinggi yang terserap klorofil a dapat menyebabkan elektron (e-) berasal dari fotosistem I atau P700 terlempar keluar orbitnya. Pada saat perjalanan elektron (e-) berasal dari P700 yang terlempar keluar orbit tersebut lalu ditangkap oleh akseptor penerima elektron seperti plastokuinon atau sitokrom. Kemudian elektron itu pindah ke akseptor lain, lalu pindah kembali ke klorofil P700 semula. Selama proses perpindahan dari akseptor satu ke akseptor lain terdapat energi yang terlepas dari elektron, energi tersebut digunakan dalam fotofosforilasi siklik dengan produk akhir berupa ATP, dan tidak dihasilkan NADPH serta O2.

ATP digunakan sebagai energi yang dapat dimanfaatkan dalam proses biologis sel-sel organisme, seperti yang telah kita pelajari sebelumnya. Dalam hal ini ATP berguna dalam pembentukan karbohidrat. Perlu Anda ketahui sintesis ATP dalam kloroplas disebut sebagai fotofosforilasi. Apa yang dimaksud fotofosforilasi? Fotofosforilasi adalah peristiwa bereaksinya senyawa ADP dan asam fosfat menjadi ATP, seperti berikut.

ADP + Pi –> ATP

2. Aliran elektron non siklis
Perjalanan aliran elektron fotosistem II, elektronnya (e-) juga berasal dari P700. Elektron (e-) yang terlempar keluar orbit dan ditangkap oleh akseptor elektron yaitu NADPH2 kemudian elektron (e-) bersamaan dengan 2H- berasal dari pecahan H2O mengikuti jalannya elektron siklik pindah ke akseptor lain seperti plastosianin atau feredoksin. Selanjutnya elektron itu pindah dan tidak kembali ke klorofil P700, tetapi mengalir melalui membran tilakoid. Dengan pelepasan elektron tersebut, maka P700 menjadi molekul yang teroksidasi sehingga menyedot elektron dari P680 berenergi tinggi yang berasal dari energi cahaya (foton) matahari. Molekul NADPH2 dan ATP yang berenergi tinggi digunakan untuk mengubah CO2 dan H2O menjadi produk gula (seperti glukosa, maltosa, fruktosa dan amilum) dan O2. Proses pembentukan gula (karbohidrat) dapat Anda lihat pada siklus Calvin.

B. REAKSI GELAP
Reaksi ini berlangsung di dalam stroma kloroplas dan pada membran tilakoid yang menghadap ke stroma. Rekasi ini dinamakan reaksi gelap atau juga disebut rekasi tak tergantung cahaya, reaksi ini menghasilkan gula dan untuk memberikan penghargaan kepada Melvin Calvin reaksi sintesis ini juga disebut siklus Calvin.
Disebut juga siklus Calvin-Benson. Reaksi ini disebut reaksi gelap, karena tidak tergantung secara langsung dengan cahaya matahari. Reaksi gelap terjadi di stroma. Namun demikian, reaksi ini tidak mutlak terjadi hanya pada kondisi gelap. Reaksi gelap memerlukan ATP, hidrogen, dan elektron dari NADPH, karbon dan oksigen dari karbondioksida, enzim yang mengkatalisis setiap reaksi, dan RuBp (Ribulosa bifosfat) yang merupakan suatu senyawa yang mempunyai 5 atom karbon. Reaksi gelap terjadi melalui beberapa tahapan, yaitu:

a) Karbondioksida diikat oleh RuBp (Ribulosa bifosfat yang terdiri atas 5 karbon) menjadi senyawa 6 karbon yang labil. Senyawa 6 karbon ini kemudian memecah menjadi 2 fosfogliserat (PGA).
b) Masing-masing PGA menerima gugus pfosfat dari ATP dan menerima hidrogen serta e- dari NADPH. Reaksi ini menghasilkan PGAL (fosfogliseraldehida).
c) Tiap 6 molekul karbon dioksida yang diikat dihasilkan 12 PGAL.
d) Dari 12 PGAL, 10 molekul kembali ke tahap awal menjadi RuBp, dan seterusnya RuBp akan mengikat CO2 yang baru.
e) Dua PGAL lainnya akan berkondensasi menjadi glukosa 6 fosfat. Molekul ini merupakan prekursor(bahan baku) untuk produk akhir menjadi molekul sukrosa yang merupakan karbohidrat untuk diangkut ke tempat penimbunan tepung pati yang merupakan karbohidrat yang tersimpan sebagai cadangan makanan.
Tahapan reaksi siklus Calvin adalah karboksilasi, reduksi dan regenerasi sebagai berikut.

Fiksasi (Karboksilasi) CO2
CO2 diikat (fiksasi) oleh senyawa rebulosa bifosfat (RuBP) yang memiliki atom C sebanyak 5 (C-5), karena hanya mengikat satu atom C (C-1) maka terbentuk senyawa RuBP dengan atom C sebanyak 6 (C-6) dalam keadaan yang tidak stabil dan pecah menjadi 2 senyawa gliseraldehid 3-fosfat (G3P).

Pada tahap ini, gula berkarbon 5 yang disebut ribulosa 1,5 bisfosfat (RuBP) mengikat CO2 membentuk senyawa interme diate yang tidak stabil, sehingga terbentuk 3-fosfogliserat. Pembentukan tersebut dikatalisis oleh enzim RuBP karboksilase atau rubisko. Sebagian besar tumbuhan dapat melakukan fiksasi karbon dan menghasilkan senyawa (produk) pertama berkarbon 3, yaitu 3-fosfogliserat. Oleh karena itu, tumbuhan yang dapat memfiksasi CO2 ini disebut tumbuhan C3. Contohnya adalah tanaman padi, gandum, dan kedelai. Pada beberapa tumbuhan, fiksasi karbon mendahului siklus Calvin dengan cara membentuk senyawa berkarbon 4 se ba gai produk pertamanya. Tumbuhan seperti ini disebut tumbuhan C4. Contohnya adalah tebu, jagung, dan anggota rumput-rumputan. Tidak seperti pada tumbuhan C3 dan C4, tumbuhan kaktus dan nanas membuka stomatanya pada malam hari dan menutupnya pada siang hari. Pada saat stomata terbuka, tumbuhan mengikatkan CO2 pada berbagai asam organik. Cara fiksasi karbon ini pertama kali dtiemukan pada tumbuhan famili Crassulaceae (tumbuhan penyimpan air) dan disebut metabolisme asam krasulase (Crassulacean Acid Metabolism) sehingga tumbuhannya disebut tumbuhan CAM. Asam organik (senyawa intermediate) yang dibuat pada malam hari disimpan dalam vakuola sel mesofil sampai pagi hari. Pada siang hari (stomata tertutup), reaksi terang dapat memasok ATP dan NADPH untuk siklus Calvin. Pada saat itu, asam organik melepaskan CO2 dan memasuki molekul gula (RuBP) dalam kloroplas. Dengan demikian, baik tumbuhan C3, C4, maupun CAM akan menggunakan siklus Calvin setelah fiksasi CO2, untuk membentuk molekul gula dari karbondioksida.

Reduksi
Selanjutnya 2 senyawa gliseraldehid 3-fosfat (G3P) bereaksi dengan ATP, membentuk asam fosfogliseraldehid yang masih berikatan dengan H2 berasal dari NADPH2. Siklus reaksinya harus berjalan 3 kali, baru terbentuk hasil akhir yaitu 6 senyawa gliseraldehid 3-fosfat (G3P).

Regenerasi
Regenerasi atau pembentukan kembali senyawa rebulosa bifosfat (RuBP) digunakan untuk mengikat CO2. Pembentukan kembali senyawa rebulosa bifosfat (RuBP) dan pecah menjadi 2 senyawa (G3P) bereaksi dengan ATP membentuk asam fosfogliseraldehid dan NADPH2. Siklus reaksinya berjalan 3 kali, dan kembali regenerasi lagi. Jadi untuk membentuk 1 molekul glukosa maka dibutuhkan sebanyak 6 kali siklus (siklus Calvin) dengan menangkap sebanyak 6 molekul 6CO2, reaksinya sebagai berikut.

6CO2 + 6H2O ——> C6H12O6 + 6O2

0 Response to "Tahap-Tahap Fotosintesis (Reaksi Gelap dan Reaksi Terang)"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel